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Abstract: Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles
(molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione,
were prepared and characterized by transmission electron microscopy, differential centrifugal sedi-
mentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, X-ray powder diffraction,
and NMR spectroscopy in aqueous dispersion. Gold nanoparticles of the same size were prepared
as control. The particles were fluorescently labeled by conjugation of the dye AlexaFluor-647 via
copper-catalyzed azide-alkyne cycloaddition after converting amine groups of glutathione into azide
groups. All nanoparticles were well taken up by HeLa cells. The cytotoxicity was assessed with an
MTT test on HeLa cells and minimal inhibitory concentration (MIC) tests on the bacteria Escherichia
coli and Staphylococcus xylosus. Notably, bimetallic AgPt nanoparticles had a higher cytotoxicity
against cells and bacteria than monometallic silver nanoparticles or a physical mixture of silver
and platinum nanoparticles. However, the measured release of silver ions from monometallic and
bimetallic silver nanoparticles in water was very low despite the ultrasmall size and the associated
high specific surface area. This is probably due to the surface protection by a dense layer of thiolated
ligand glutathione. Thus, the enhanced cytotoxicity of bimetallic AgPt nanoparticles is caused by the
biological environment in cell culture media, together with a polarization of silver by platinum.

Keywords: nanoparticles; silver; gold; platinum; cytotoxicity; antibacterial effects

1. Introduction

Nanoparticles are the basis of nanomedicine, i.e., the targeted delivery of drugs by
therapeutic or theranostic nanoparticles [1–4]. Imaging is also possible with the application
of suitably functionalized nanoparticles [5–7]. Another important area is the fight against
pathogenic bacteria, e.g., during implant-associated infections. Here, nanoparticles with
bactericidal properties represent a promising alternative to antibiotics [8,9]. One approach is
to use nanoparticles as carriers of drugs against bacteria, and an alternative is the controlled
release of bactericidal ions like silver or copper to exert a specific bactericidal action.
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Silver nanoparticles have gained some prominence in this field due to their well-
known antibacterial effect [10–13]. However, it has been demonstrated that silver ions are
toxic against eukaryotic cells (e.g., healthy tissue) as well [14]. An alternative approach is to
prepare bimetallic nanoparticles where silver is mixed with a nobler metal like gold [15–20]
or platinum [21–23]. Another option is to make the nanoparticles very small so that they
are more mobile in the body and less prone to form a protein corona on their surface [24].

Here, we present the biological effects of ultrasmall bimetallic silver–platinum nanopar-
ticles with variable metal ratio (diameter about 2 nm), coated with glutathione (GSH), and
compare their bactericidal effect with the cytotoxic effect against eukaryotic cells. In addi-
tion, monometallic nanoparticles of silver, platinum, and gold (as control) of the same size
were studied, as well as a physical mixture of silver and platinum nanoparticles.

2. Materials and Methods
2.1. Chemicals and Reagents

Ultrapure water prepared with a Purelab ultra instrument (ELGA, Celle, Germany)
with a specific resistivity of 18.2 MΩ was used for all syntheses and analyses, unless
otherwise noted. All glassware for the syntheses was cleaned with boiling aqua regia and
rinsed twice with water before use.

As metal precursors, silver nitrate (AgNO3, 99%, Carl Roth, Karlsruhe, Germany),
hexachloridoplatinum(+IV) acid (H2PtCl6, 8 wt% in H2O; Sigma-Aldrich, Steinheim, Ger-
many), and tetrachloridoauric(+III) acid (HAuCl4; prepared by dissolution of elemental
gold in aqua regia) were used. Sodium borohydride (NaBH4, 96%), L-glutathione (GSH,
98%), copper(II)sulfate pentahydrate (>99%), sodium L-ascorbate (>99%), and Spin-X® UF
30 kDa MWCO PES spin filters (Corning®) were obtained from Sigma-Aldrich. Sodium
hydroxide (NaOH, 1 M), hydrochloric acid (HCl, 37%), and nitric acid (HNO3, 67%) were
obtained from Bernd Kraft (Duisburg, Germany). Methanol (99.8%) was obtained from
FisherScientific (Geel, Belgium). Aminoguanidine hydrogen carbonate (98%) was obtained
from Alfa Aesar (Kandel, Germany). Tris(3-hydroxypropyltriazolylmethyl)amine (TH-
PTA, >95%) and AlexaFluor-647-alkyne (95%) were obtained from Jena Bioscience (Jena,
Germany). Dodecane (99%) and 2-(4,5-dimethylthiazol-2-yl)-3,5-diphenyl-2H-tetrazol-3-
ium bromide (MTT) were obtained from ThermoFisher Scientific (Schwerte, Germany).
Dimethyl sulfoxide (DMSO, >99.5%) was obtained from Carl Roth. For differential centrifu-
gal sedimentation (DCS), a PVC nanoparticle calibration dispersion (Lot#149, 1.385 g L−1)
was obtained from CPS Instruments Inc. (Oosterhout, The Netherlands). Deuterium oxide
(D2O, 99.9%) was obtained from Deutero GmbH (Kastellaun, Germany). 10 kDa spin filters
were obtained from Merck (Darmstadt, Germany). Imidazole-1-sulfonyl azide hydrogen
sulfate was prepared as reported earlier [25].

2.2. Electron Microscopy

High-resolution transmission electron microscopy (HRTEM) was carried out with an
FEI Titan transmission electron microscope (ThermoFisher, Schwerte, Germany, which was
aberration-corrected with a Cs-probe corrector (CEOS Company, Heidelberg, Germany)
and operated at an accelerating voltage of 300 kV [26]. The nanoparticles were dispersed in
water, followed by placing a drop of the suspension onto a carbon-coated copper grid and
allowing it to dry under ambient conditions. The core diameter was determined manually
by measuring the size of at least 100 particles from different HRTEM images.

2.3. X-ray Powder Diffraction (XRD)

X-ray powder diffraction (XRD) was performed with a Bruker D8 Advance diffrac-
tometer (Bruker Company, Billerica, MA, USA), with Cu Kα radiation (λ = 1.54 Å) operating
at 40 kV and 40 mA. A dispersion of nanoparticles was placed on a silicon single-crystal
sample holder to minimize scattering and dried in air. The samples were measured in
reflection mode from 20 to 90◦ 2Θ with a step size of 0.02◦ and a counting time of 8 s per
step. This resulted in a total measurement time of 500 min. Qualitative phase analysis was
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performed with Diffrac.Suite EVA V1.2 from Bruker with the patterns of the metals Ag
(#04-0783) and Pt (#04-0802) and their oxides Ag2O (#41-1104) and PtO (#47-1171) from the
ICDD database.

2.4. Small-Angle X-ray Scattering (SAXS)

Small-angle X-ray scattering was performed at the EMUSAXS center of the Institute of
Physics, University of São Paulo. The laboratory-based equipment Xeuss 2.0 was used for
the data acquisition. The source was a Genix3D Cu Kα X-ray tube (λ = 1.5418 Å), equipped
with a Focus3D mirror. The beam was collimated with two sets of scatterless slits, leading to
a beam size of 0.7 × 0.7 mm2. The 2D scattering images were collected on a Dectris-Pilatus
300k detector placed at a 537 mm distance from the sample. The images were integrated
with the program Fit2D [27]. 1D curves of the intensity as function of the reciprocal space
momentum transfer modulus q were obtained. q is defined as q = 4π sin(θ)/λ, where θ is
the scattering angle. The liquid samples (nanoparticles dispersed in water) were placed on
reusable sample holders composed of borosilicate glass capillaries (Hilgenberg, Germany)
of 1.5 mm diameter, glued on stainless steel cases. The holder was closed with rubber
caps which allowed the measurements in vacuum. In this way, samples and blank were
measured under exactly the same conditions, which is crucial for the proper data treatment.
The data treatment was performed with the program SuperSAXS [28] using plain water as
blank. The scattering from water was also used for absolute scale normalization.

The scattering data were analyzed by a polydisperse hard spheres model, as already
used in previous work with nanoparticles [29]. In this model, the particles are described
with a central radius R, a polydispersity σ, a hard spheres interaction radius RHS, and a
volume fraction η.

2.5. NMR Spectroscopy

Proton and carbon nuclear magnetic resonance (NMR) analyses were conducted with
a Bruker AVIII HD spectrometer (Bruker Company, Billerica, MA, USA). The spectrometer
was equipped with a nitrogen-cooled probe and operated at 600.13 MHz for 1H and
150.90 MHz for 13C. For 1H NMR acquisition, the excitation sculpting technique to attenuate
the solvent’s signal was used. Similarly, water signal pre-saturation was employed during
COSY, HSQC, and HMBC experiments to achieve analogous suppression.

2.6. DOSY-NMR Spectroscopy

DOSY-NMR spectroscopy was performed and analyzed as previously described [30]
on a Bruker Avance III 700 MHz spectrometer (Bruker Company, Billerica, MA, USA)
equipped with a 5 mm TCI cryoprobe with a z-gradient at 25 ◦C. 1H DOSY spectra were
recorded with a diffusion time of ∆ = 100 ms, a pulsed gradient duration of δ = 3.5 ms, and
the gradient strength ranging from 5–95% of the maximum (66 G cm−1) in 32 steps. Spectra
were processed with Topspin 3.5 (Bruker). The linearized diffusion data were analyzed
according to the Stejskal–Tanner equation [31,32]:

ln
(

I
I0

)
= −γ2·δ2·

(
∆ − δ

3

)
·D·G2 (1)

with I the signal intensity, I0 the signal intensity without gradient, γ the gyromagnetic ratio
of 1H, δ the diffusion gradient pulse length, ∆ the diffusion delay, G the gradient strength,
and D the translational diffusion coefficient.

The Stejskal–Tanner plots for three GSH signals (H1/H6 3.8 ppm, H4 2.6 ppm, 2.2 ppm)
were first analyzed separately. Then, the data points of all three signals were averaged,
with the error bars representing their standard deviation. While the intrinsic standard error
of the Stejskal–Tanner fit is small (<2%), we estimate the error of the diffusion coefficient
to about 20% due to the manual integration and potential overlaying of small signals
from impurities.
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The hydrodynamic diameter was calculated according to the Stokes–Einstein
equation [33]:

dH =
kB · T

3 · π · η · D
(2)

with dH the hydrodynamic diameter, kB the Boltzmann constant, T the temperature in K, η
the dynamic viscosity at 25 ◦C, and D the translational diffusion coefficient.

2.7. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) was performed with a SPECS spectrometer
(SPECS Surface Nano Analysis GmbH, Berlin, Germany), which was equipped with a
Phoibos 150 1D-DLD hemispherical energy analyzer. The monochromatized Al Kα X-ray
source (E = 1486.6 eV) was operated at 15 kV and 200 W. The pass energy was set to 20 eV
for high-resolution scans, and the medium area mode was used as lens mode. The base
pressure in the analysis chamber was set to 1·10−10 mbar during the experiment. All spectra
were referred to C 1s at 284.5 eV to account for charging effects. The spectra were evaluated
with the CasaXPS software v2.3.26rev1.1s [34].

2.8. Elemental Analysis (AAS, ICP-MS)

Atomic absorption spectroscopy (AAS) with a Thermo Electron M-series spectrometer
(ThermoFisher, Schwerte, Germany) graphite tube furnace, operated in accordance with
DIN EN ISO/IEC 17025:2005), was used to determined the concentrations of Ag, Au, and
Pt concentrations in the nanoparticle dispersions. 10 µL of a nanoparticle dispersion was
dissolved in concentrated nitric acid (955 µL) and diluted with 3 mL water to determine
Ag. 10 µL of nanoparticle dispersion was dissolved in aqua regia (950 µL) and diluted
with 3 mL water to determine Au and Pt. The concentrations of Ag, Au, Pt, and S were
determined by inductively coupled plasma mass spectrometry (Spectro model Spectro
Arcos after microwave digestion) at Mikroanalytik-Labor Kolbe (Oberhausen, Germany).

2.9. Differential Centrifugal Sedimentation (DCS)

Differential centrifugal sedimentation, also known as analytical disc centrifuga-
tion, was performed with a CPS Instruments DC 24000 disc centrifuge (24,000 rpm,
29,000 relative centrifugal force; rcf). Different sucrose solutions (8 and 24 wt%) were used
to obtain a density gradient. Dodecane (0.5 mL) was added as a top layer to prevent
evaporation. Before each measurement, a dispersion of polyvinylchloride (PVC) latex in
water with a specific hydrodynamic diameter of 483 nm by CPS was used for calibration.
A volume of 100 µL was added to the nanoparticle dispersion. For the calculation of the
hydrodynamic diameter of the monometallic nanoparticles, the densities of elemental silver
(10.49 g cm−3), elemental platinum (21.45 g cm−3), and elemental gold (19.32 g cm−3)
were used. For the bimetallic nanoparticles, the densities of elemental silver and elemental
platinum were used according to the molar ratio of the particles.

2.10. UV-Vis Spectroscopy

UV-Vis spectroscopy was performed with water-dispersed nanoparticles from 200 nm
to 800 nm (600 µL sample volume) with a Genesis 50 instrument (ThermoFisher, Schwerte,
Germany). Background correction was performed with ultrapure water as reference.

2.11. Fluorescence Spectroscopy

The fluorescence spectra were measured with water-dispersed nanoparticles on a
Cary Eclipse spectrometer (Agilent Technologies, Santa Clara, CA, USA) in a fluorescence
cuvette (600 µL sample volume).

2.12. Synthesis of Glutathione-Coated Nanoparticles

The syntheses of glutathione-coated monometallic gold, platinum, and silver nanopar-
ticles and of bimetallic Ag50Pt50 nanoparticles were reported earlier [30]. The synthesis
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of Ag70Pt30 and Ag20Pt80 nanoparticles was carried out in the same way as with Ag50Pt50
particles by changing the ratio of silver to platinum and adjusting the reaction conditions.
However, we found that the ratio of the elements found in the nanoparticles was not the
same as the ratio of the elements in the precursor solution; i.e., silver was incorporated
more easily than platinum into the bimetallic nanoparticles. With a series of experiments
with different metal ratios, followed by elemental analysis of the bimetallic nanoparticles,
the synthesis parameters were optimized.

To synthesize bimetallic Ag20Pt80 nanoparticles, 400 mL water was added to a 1 L
round-bottomed flask. The water was degassed for 15 min with argon. Then, 450 µL of
100 mM silver nitrate solution (4.5 µmol, 0.5 mg Ag) and 4.1 mg glutathione (85.5 µmol)
dissolved in 1 mL water were added. The solution was stirred for 30 min. Next, 445 µL
H2PtCl6 (c(Pt) = 37.5 g L−1, 85.5 µmol, 16.7 mg Pt) and 26.0 mg glutathione (85.5 µmol)
dissolved in 1 mL water were added and again stirred for 30 min. After that, 83.3 mg
NaBH4 (2.2 mmol) dissolved in 2 mL ice-cold water was quickly added. The stirring was
continued for 30 min. The final dispersion had a brown color. Most of the water was
removed under vacuum in a rotary evaporator. The Ag20Pt80 nanoparticles were isolated
by spin filtration (10 kDa Amicon spin filters at 4000 rpm, 2500× g, 20 min). They were then
washed twice with 0.1 M NaOH and six times with water to remove unbound GSH and
synthesis by-products. As determined with AAS, the yields were 90% (0.44 mg, 4.05 µmol)
for silver and 21% (3.45 mg, 17.66 µmol) for platinum. With ICP-MS, the yields were 81%
(0.39 mg, 3.65 µmol) for silver and 23% (3.83 mg, 19.6 µmol) for platinum. The molar ratio
in the particles was 19% Ag to 81% Pt according to AAS and 16% Ag to 84% Pt according
to ICP-MS.

To synthesize bimetallic Ag70Pt30 nanoparticles, 400 mL water was added to a 1 L
round-bottomed flask. The water was degassed for 15 min with argon. Then, 2.25 mL of
200 mM silver nitrate solution (45 µmol, 4.85 mg Ag) and 40.5 mg glutathione (135 µmol)
dissolved in 1 mL water were added. The solution was stirred for 30 min. Next, 234 µL
H2PtCl6 (c(Pt) = 37.5 g L−1, 45 µmol, 8.78 mg Pt) and 13.9 mg glutathione (45 µmol)
dissolved in 1 mL water were added and again stirred for 30 min. After that, 76 mg NaBH4
(2.0 mmol) dissolved in 2 mL ice-cold water was quickly added. The stirring continued
for 30 min. The final dispersion had a brown color. Most of the water was removed under
vacuum in a rotary evaporator. The Ag70Pt30 nanoparticles were isolated by spin filtration
(10 kDa Amicon spin filters at 4000 rpm, 2500× g, 20 min). They were then washed twice
with 0.1 M NaOH and six times with water to remove unbound GSH and synthesis by-
products. AAS yields were 93% (4.53 mg, 42.0 µmol) for silver and 38% (3.29 mg, 16.9 µmol)
for platinum. With ICP-MS, the yields were 96% (4.67 mg, 43.3 µmol) for silver and 39%
(3.42 mg, 17.5 µmol) for platinum. The molar ratio in the particles was 71% Ag to 29% Pt
according to AAS and 71% Ag to 29% Pt according to ICP-MS.

2.13. Fluorescent Labeling of GSH-Coated Nanoparticles

The surface azidation of the mono- and bimetallic GSH-coated nanoparticles was
performed according to the procedure reported by Klein et al. [25] The click reaction
of azide-containing nanoparticles with alkyne-terminated dyes was performed with a
modified synthesis scheme reported by Klein et al. [25] and van der Meer et al. [35].

A stock solution of Cu-THPTA was prepared by mixing 2 mL CuSO4 solution (5 mM,
10 µmol, 0.636 mg Cu), 2 mL saturated aminoguanidine solution, and 4 mL THPTA solution
(48 mM, 192 µmol, 84 mg).

For the surface azidation of gold nanoparticles, Au-GSH nanoparticles (15 mg Au,
0.31 µmol NP) were dispersed in 18 mL water and 54 mL methanol in a 250 mL round-
bottom flask for the surface azidation reaction. The azide transfer reagent imidazole-1-
sulfonyl azide hydrogen sulfate (ISA; 184 mg, 676 µmol) was dissolved in 2 mL water and
added to the reaction solution under vigorous stirring. Then, K2CO3 (94 mg, 676 µmol,
dissolved in 2 mL water) was added to the reaction solution. The solution became cloudy
and grayish after the addition of the reagents. Immediately thereafter, 1.04 mL of 5 mM
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CuSO4 solution (5.2 µmol) and 1 mL of 1 M NaOH were added. Water (about 20 mL)
was then added until the turbidity had mostly disappeared. The solution was stirred at
room temperature for 72 h. Prior to purification, the reaction solution was diluted to a
total volume of 250 mL with water to keep the methanol content as low as possible for the
subsequent spin filtration due to the sensitivity of the spin filters to organic solvents. The
retrieved Au-N3 particles were washed twice with 0.1 M NaOH and six times with water
by spin filtration (10 kDa Amicon spin filter at 4000 rpm, 2500× g, 20 min). The yield was
74% (11 mg Au) as determined by AAS.

For conjugation with AF647, Au-N3 nanoparticles (62 nmol nanoparticles, 3 mg Au)
were added to a 25 mL round bottom flask in 10 mL water. The solution was stirred and
100 µL 11.2 mM AF647-alkyne (1.12 µmol, 1 mg, 18 equivalents AF647 per nanoparticle)
was added to the dispersion. Then 583 µL of the Cu-THPTA stock solution was added. Then
301 µL sodium ascorbate solution (10 mM, 3.6 µmol, 0.6 mg) was added to the nanoparticle
dispersion. The reaction solution was stirred for 17 h at room temperature under light
exclusion. Spin filtration was used for purification. Dispersions were centrifuged in Amicon
10 kDa spin filter at 4000 rpm, 2500× g, for 20 min and washed with water until the filtrate
was colorless (at least 12 times). The yield was 80% (2.4 mg Au) as determined by AAS.

The adapted synthesis conditions for the surface azidation and the click reaction for
silver, platinum, and silver–platinum nanoparticles are summarized in Tables 1 and 2. All
other conditions and parameters were the same as described here for gold nanoparticles.

Table 1. Reaction conditions for the synthesis of N3-terminated nanoparticles (M-N3). The nanopar-
ticle concentration was computed assuming spherical nanoparticles of 2 nm diameter. All other
synthesis conditions were the same as with gold nanoparticles. The yield was 50 to 90% with respect
to the total metal content.

Au Ag Ag50Pt50 Pt

GSH-terminated nanoparticles
used for the synthesis

15 mg Au, 0.31 µmol
nanoparticles

15 mg Ag, 0.57 µmol
nanoparticles

6.47 mg Ag, 11.7 mg Pt,
0.48 µmol nanoparticles

18.8 mg Pt, 0.35 µmol
nanoparticles

round-bottomed flask 250 mL 500 mL 250 mL 250 mL
H2O 18 mL 36 mL 20 mL 24 mL
methanol 54 mL 108 mL 60 mL 72 mL
ISA 184 mg, 676 µmol 394 mg, 1.45 mmol 221 mg, 812 µmol 357 mg, 1.31 mmol
K2CO3 94 mg, 676 µmol 201 mg, 1.45 mmol 113 mg, 812 µmol 183 mg, 1.31 mmol
5 mM CuSO4 solution 1.04 mL, 5.2 µmol 2.52 mL, 12.6 µmol 3.67 mL, 18.4 µmol 3.91 mL, 19.6 µmol
1 M NaOH solution 1 mL 2 mL 2 mL 4 mL
Reaction time 72 h 48 h 48 h 72 h

Table 2. Reaction conditions for the synthesis of AF647-terminated nanoparticles (M-AF647). The
nanoparticle concentration was computed assuming spherical nanoparticles of 2 nm diameter. All
other synthesis conditions were the same as with gold nanoparticles. The yield was about 80% with
respect to the total metal content.

Au Ag Ag50Pt50 Pt

N3-terminated nanoparticles
used for the synthesis

3 mg Au, 62 nmol
nanoparticles

2.54 mg Ag, 96 nmol
nanoparticles

1.85 mg Pt, 0.61 mg Ag,
61 nmol nanoparticles

3.7 mg Pt, 68 nmol
nanoparticles

11.2 mM AF647-alkyne solution 100 µL, 1.12 µmol, 1 mg 155 µL, 1.73 µmol, 1.54 mg 100 µL, 1.12 µmol, 1 mg 61 µL, 0.68 µmol, 0.61 mg
Cu-THPTA solution 583 µL 853 µL 459 µL 1.5 mL
10 mM sodium ascorbate
solution 301 µL, 3.6 µmol, 0.6 mg 246 µL, 2.46 µmol, 0.49 mg 164 µL, 1.6 µmol, 0.33

mg 535 µL, 5.4 µmol, 1.06 mg

Reaction time 17 h 6 h 17 h 17 h

2.14. Uptake of M-AF647 Nanoparticles by HeLa Cells

HeLa cells (obtained from American Type Culture Collection, ATCC, Manassas, USA
were cultured at 37 ◦C in 5% CO2 in GibcoTM Dulbecco’s modified Eagle’s medium
(DMEM), supplemented with 10% fetal bovine serum (FBS, obtained from ThermoFisher),
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100 U mL−1 penicillin, 100 U mL−1 streptomycin, 1 mM GibcoTM sodium pyruvate, and
1 mM GibcoTM GlutaMAX. After a confluence of 70–90% was reached (after two to three
days), the cells were passaged by trypsinization with 0.05% GibcoTM Trypsin-EDTA. Be-
tween each step of the experiment, the cells were washed three times with GibcoTM Dul-
becco’s buffered saline (DPBS).

The uptake of AF647-terminated ultrasmall nanoparticles by HeLa cells was analyzed
in an 8-well chamber polymer slide surface modified with ibiTreat for tissue culture appli-
cations (µ-Slide 8-well, ibidi) by multiple focal plane confocal laser scanning microscopy
(CLSM; TCS SP8X Falcon instrument from Leica Microsystems with a 63×/1.2 water im-
mersion objective). Briefly, 2·105 cells were seeded per well and incubated with 0.2 mL
DMEM overnight at 37 ◦C in 5% CO2 atmosphere. Finally, the cells were incubated
with AF647-terminated nanoparticles at a concentration of 12.5 µg mL−1 (metal content)
nanoparticles per well. HeLa cells cultured in medium alone served as control group. After
incubation for 24 h, the cells were washed three times with DPBS and fixed with a 4 vol%
formaldehyde solution, according to standard protocols. The actin cytoskeleton of the cells
was stained with AlexaFluor-448 phalloidin. Cell nuclei were stained with DAPI. Excitation
wavelengths were 405 nm for DAPI (emission: 420 to 460 nm), 488 nm for AlexaFluor-488
(emission: 495 to 515 nm), and 647 nm for AF647 (emission: 660 to 700 nm). For the CLSM
images, z-stacks were taken across the cells at a distance of 200 nm. All nanoparticles were
investigated after four weeks of storage in dispersion.

2.15. MTT Tests of M-GSH Nanoparticles with HeLa Cells

The cell viability after nanoparticle incubation was determined with an MTT assay.
HeLa cells were first seeded at a density of 20,000 cells per well in a 24-well plate and then
incubated with 0.5 mL DMEM overnight at 37 ◦C and 5% CO2 atmosphere. The cells were
then incubated with GSH-terminated nanoparticles. The dispersions of the nanoparticles
were tested at concentrations between 2.5 µg mL−1 and 100 µg mL−1 (metal content). HeLa
cells cultured in medium served as control. After the cells had been incubated for 24 h,
they were washed three times with DPBS to remove the nanoparticles. To prepare the
staining solution, 30 mg MTT was dissolved in 5 mL DPBS and diluted with 25 mL DMEM
to a final concentration of 1 mg mL−1. To each well, 0.3 mL of the staining solution was
added, and the cells were incubated for 1 h at 37 ◦C and 5% CO2 atmosphere. The solution
was removed and 0.3 mL of DMSO was added into each well and incubated for 30 min at
room temperature. The amount of dissolved formazan was quantified in a 96-well plate
with a Multiscan plate reader (Thermo Fisher, Schwerte, Germany) at 570 nm. For each
nanoparticle type and concentration, at least two independent cell culture experiments were
performed. All nanoparticles were investigated after four weeks of storage in dispersion.

2.16. Antibacterial Tests of M-GSH Nanoparticles with Staphylococcus xylosus and
Escherichia coli

The minimal inhibitory concentration (MIC) is defined as the lowest concentration of
an antimicrobial agent or drug that inhibits the growth of a given microbial strain in vitro.
Bacterial strains were cultivated in Lysogeny Broth (LB, 20 g L−1) and Trypticase Soy Broth
(TSB). TSB was prepared by mixing CASO-Bouillon (30 g L−1) and yeast extract (3 g L−1). To
prepare solid media, Agar-Agar Kobe I was added to liquid media (15 g L−1). All reagents
for media preparation were purchased from Carl Roth. The culture media were sterilized by
autoclaving (LABOKLAV 25, SHP Steriltechnik, Detzel Schloß, Germany). Liquid cultures
of Staphylococcus xylosus DSM 6179 (Schleifer and Kloos 1975) and Escherichia coli DH5α
were grown overnight (130 rpm, 37 ◦C) in a MaxQTM 4000 orbital shaker (Thermo Scientific,
USA). Next, log-phase liquid cultures of bacteria were prepared by inoculating (5% v/v)
sterile TSB and LB culture media from overnight cultures of S. xylosus and E. coli, respectively.
Bacteria were grown (180 rpm, 37 ◦C) until the fresh cultures had reached an optical density of
0.6 at the wavelength of 600 nm (cell density meter WPA Biowave, Thermo Fisher, Schwerte,
Germany), which indicates the logarithmic growth phase of the bacterial cultures.
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MIC experiments were performed in 96-well microplates (Thermo Fisher, Schwerte,
Germany). Briefly, 190 µL of M-GSH nanoparticle-containing culture medium per well
was mixed with 10 µL of the appropriate bacterial log-phase culture. The plate was then
incubated overnight with gentle rotation in an orbital shaker (90 rpm, 37 ◦C). The MIC
values were determined spectrophotometrically after 24 h of incubation with a HiPo MPP-
96 microplate reader (Biosan, Riga, Latvia) at a wavelength of 620 nm. Each sample was
prepared and measured in triplicate. As reference, media supplemented with dissolved
AgNO3 as source of cytotoxic silver ions were investigated. The range of 0–100 µg mL−1

nanoparticles/salt was studied in steps of 0, 5, 10, 15, 25, 50, 75, and 100 µg metal mL−1.
Parallel to the MIC experiments, CFU (colony-forming unit) values of the log-phase cultures
were determined on agar plates after overnight incubation at 37 ◦C (HerathermTM Compact,
Thermo Fisher, Schwerte, Germany) to determine culture viability and bacterial cell dose
per well. Bacterial colonies were counted with an SC6+ digital colony counter (VWR
International, Darmstadt, Germany). All nanoparticles were investigated after four weeks
of storage in dispersion.

3. Results

The syntheses and physico-chemical characterization data of monometallic glutathione-
coated gold, silver, and platinum nanoparticles, as well as Ag50Pt50 nanoparticles, were
reported earlier [30]. Bimetallic nanoparticles with the compositions of Ag70Pt30 and
Ag20Pt80 were prepared in addition to assess the effect of the metal ratio in the nanoalloys.
All particles were synthesized by reduction of the corresponding metal salts with NaBH4 in
a modified Brust–Schiffrin synthesis with glutathione (GSH) as stabilizing ligand [36–39].
The characterization data of the additional bimetallic compositions Ag70Pt30 and Ag20Pt80
were well in line with the other mono- and bimetallic particles.

HRTEM images of the GSH-coated nanoparticles are shown in Figure 1. The aver-
age particle diameter was about 2 nm. Electron diffraction accompanied by Fast Fourier
Transform (FFT) indicated amorphous Ag70Pt30 and crystalline Ag20Pt80 particles in agree-
ment with amorphous Ag50Pt50 nanoparticles [30]. The monometallic Ag, Au, and Pt
nanoparticles were all crystalline, as shown earlier by electron diffraction [30].

The hydrodynamic diameter of the nanoparticles dispersed in water was determined
with differential centrifugal sedimentation (DCS; Figure S1). The diameter of the dispersed
Ag70Pt30 and Ag20Pt80 nanoparticles was less than 2 nm, indicating a good dispersibility in
water without detectable agglomeration. This was confirmed by dynamic light scattering
(DLS) that did not give a scattering signal. Note that DCS generally underestimates the particle
size because the actual density of the particles is lower due to the hydrated ligand shell [40].

Small-angle X-ray scattering showed well-dispersed nanoparticles (Figure S2). From
the data analysis, a diameter of 1.0 ± 0.1 nm with polydispersities of 0.4 nm and 0.5 nm
for Ag70Pt30 and Ag20Pt80, respectively, was obtained. Moderate particle interactions
were observed, giving a hard sphere radius of 3.5 ± 0.1 nm and a volume fraction of
0.054 ± 0.005 for Ag70Pt30 nanoparticles. The corresponding values for Ag20Pt80 nanopar-
ticles were 4.1 ± 0.1 nm and 0.071 ± 0.006. X-ray powder diffraction indicated very small
particles, as shown by the very broad diffraction peaks with indications for the presence
of oxidized silver (Figure S3). X-ray photoelectron spectroscopy confirmed the oxidized
nature of the particles which was also detected earlier in Ag50Pt50 nanoparticles [30]. Silver
was fully oxidized, and platinum was present as a mixture of metallic platinum and oxi-
dized platinum species (Figure S4). NMR spectroscopy, which is possible for ultrasmall
nanoparticles [41], showed the firm attachment of glutathione to the nanoparticles and the
absence of free (dissolved) glutathione (Figures S5–S9). The hydrodynamic diameter of
the dispersed particles, together with the ligand shell, was probed with 1H-DOSY-NMR
spectroscopy. The number of glutathione ligands on the surface of each nanoparticle was
determined to be 200 to 300 with ICP-MS (see ref. [30] and Table 3 for detailed stoichiometric
and analytical data).
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Figure 1. HRTEM images of GSH-coated Ag70Pt30 and Ag20Pt80 bimetallic nanoparticles, together with
manually determined particle size distributions (red: fit line). A magnified particle is shown in the upper
right corner of each overview image. Ag70Pt30 particles were amorphous and Ag20Pt80 particles were
crystalline. Note the higher contrast of the Pt-rich nanoparticles due to the heavier Pt atoms.

Monometallic gold, silver, and platinum nanoparticles, as well as bimetallic Ag50Pt50
nanoparticles, were surface-conjugated with the fluorescent dye AlexaFluor-647 (AF647)
as reported earlier for gold nanoparticles [25]. The reaction procedure is schematically
depicted in Figure 2, i.e., first the synthesis of M-GSH nanoparticles, followed by surface
azidation to M-N3 nanoparticles [25], and finally conjugation of the alkyne-terminated
dye AF647 via copper-catalyzed azide-alkyne cycloaddition (CuAAC) to yield M-AF647
nanoparticles [42]. This fluorescent labeling permits us to trace the particles during cell
culture experiments. The particle types Ag70Pt30 and Ag20Pt80 were not fluorescently
labeled as their uptake by cells is not expected to be different from Au, Ag, Pt, and Ag50Pt50
nanoparticles (same size, just different metal cores).

With a combination of UV-Vis spectroscopy (giving the concentration of AF647) and
atomic absorption spectroscopy (AAS; giving the concentration of gold nanoparticles),
between 6 and 13 AF647 molecules were detected on each nanoparticle (see Table 3), in good
agreement with earlier data on dye-conjugated ultrasmall gold nanoparticles [25,35,43].

Figure 3 shows fluorescence spectra of all labeled M-AF647 nanoparticles. All particles
showed a distinct fluorescence, demonstrating that no significant quenching occurred as
expected for ultrasmall nanoparticles [44].

Confocal laser scanning microscopy was used to follow the uptake of the fluorescently
labeled M-AF647 nanoparticles by HeLa cells (Figure 4). All particles were well taken up
by the cells.

To assess the cytotoxicity of GSH-coated ultrasmall nanoparticles, an MTT assay with
HeLa cells was performed (Figure 5 and Table 4). This assay provides information on
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the metabolic activity of the cells and serves as an indicator of cell viability and prolif-
eration [45]. In addition to monometallic and bimetallic silver–platinum nanoparticles,
a physical mixture of the monometallic nanoparticles was also used to investigate pos-
sible polarization effects. All viability data were normalized to untreated cells (100%).
Cell viabilities above 100% in some cases are considered not significant and within the
experimental error.
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Figure 4. Confocal laser scanning images showing the uptake of ultrasmall AF647-functionalized
nanoparticles. HeLa cells were incubated with 12.5 µg mL−1 nanoparticles (metal concentration) for
24 h, followed by washing, fixation, and staining. Mock: Untreated HeLa cells (no nanoparticles).
Nuclei: DAPI staining (blue). Actin: staining with AlexaFluor™-488 phalloidin (green). NP: AF647
fluorescence, showing the nanoparticles (magenta). All scale bars are 20 µm.

The antibacterial activity of the GSH-coated nanoparticles was assessed by determi-
nation of the minimal inhibitory concentration (MIC) in broth cultures of Gram-negative
(G-) Escherichia coli and Gram-positive (G+) Staphylococcus xylosus bacteria (Table 5). MIC
values of monometallic nanoparticles (Ag, Au, and Pt) were above the highest studied
nanoparticle concentration (100 µg mL−1). In other words, the particles were not toxic for
both bacterial strains. MIC values of the bimetallic nanoparticles (Ag50Pt50) ranged from
1–5 µg mL−1 for S. xylosus to 11–15 µg mL−1 for E. coli, indicating a significant cytotoxic
effect against bacteria, especially towards Gram-positive S. xylosus. These concentrations
are in the range that is characteristic for potent conventional antibiotics [46–48]. In contrast,
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the incubation with a physical mixture of monometallic nanoparticles (Ag/Pt 50:50) gave
MIC results comparable to the monometallic nanoparticles, i.e., a low cytotoxicity.

Table 3. Analytical data of all prepared and investigated GSH-coated ultrasmall nanoparticles.

Ag Ag70Pt30 Ag50Pt50 Ag20Pt80 Pt Au

particle core volume/nm3 4.19 * 4.19 * 4.19 * 4.19 * 4.19 * 4.19 *
particle core weight/g·1023 4.39 * 5.54 * 6.69 * 7.84 * 8.98 * 8.09 *
particle density/g cm−3 10.49 13.78 ** 15.97 ** 19.26 ** 21.45 19.32
particle core surface area/nm2 12.57 * 12.57 * 12.57 * 12.57 * 12.57 * 12.57 *
hydrodynamic diameter
(DCS)/nm 1.7 ± 0.5 *** 1.5 ± 0.3 1.6 ± 0.3 *** 1.6 ± 0.4 1.6 ± 0.4 *** 1.5 ± 0.3 ***

diffusion coefficient
(1H-DOSY)/10−10 m2 s−1 1.47 *** 1.53 1.60 *** 1.69 1.56 *** 1.28 ***

hydrodynamic diameter
(1H-DOSY)/nm 3.32 *** 3.19 3.05 *** 2.88 3.14 *** 3.81 ***

particle core diameter
(HRTEM)/nm 2.2 ± 0.5 *** 1.9 ± 0.6 1.8 ± 0.4 *** 1.8 ± 0.3 2.0 ± 0.4 *** 2.0 ± 0.4 ***

particle core diameter
(SAXS)/nm 1.0 ± 0.1 *** 1.0 ± 0.1 1.6 ± 0.1 *** 1.0 ± 0.1 0.9 ± 0.1 *** 0.8 ± 0.2

crystallinity by TEM crystalline *** amorphous amorphous *** crystalline crystalline *** crystalline ***
oxidation state of metals by XPS Ag+ *** Ag+, Pt, Pt2+ Ag+, Pt, Pt2+ *** Ag+, Pt, Pt2+ Pt, Pt2+ *** Au ***
normalized molar ratio
metal(M):sulfur(S) by ICP-MS

1.00 (Ag):1.28
(S) ***

0.71 (Ag):0.29
(Pt):0.65 (S)

0.59 (Ag):0.41
(Pt):0.68 (S) ***

0.16 (Ag):0.84
(Pt):1.35 (S)

1.00 (Pt):0.73 (S)
***

1.00 (Au):0.82
(S) ***

overall nominal composition of
one nanoparticle

Ag245GSH315
*** Ag184Pt74GSH170

Ag156Pt110GSH180
*** Ag43Pt230GSH370 Pt277GSH206 *** Au247GSH203

***
GSH molecular footprint/nm2 0.040 *** 0.074 0.070 *** 0.034 0.062 *** 0.062 ***
number of conjugated
AlexaFluor-647 molecules on
each M-AF647 nanoparticle by
AAS and UV-VIS

13 - 8 - 6 12

*: Computed values based on the assumption that the average particle diameter was 2 nm and that the nanoparti-
cles were spherical. ** Computed from the stoichiometry as determined with ICP-MS. *** The data of GSH-coated
Ag, Au, Pt, and Ag50Pt50 nanoparticles were taken from ref. [30].
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Figure 5. MTT viability assay carried out with HeLa cells after incubation for 24 h with water-
dispersed GSH-coated nanoparticles. For the bimetallic silver nanoparticles, the given concentrations
refer to the total metal concentration. Ag/Pt (50:50) represents an equimolar 50:50 physical mixture
of Ag and Pt nanoparticles. The data represent the mean of two individual experiments with the
error bars indicating the standard deviation (N = 2).

It is now well accepted that silver nanoparticles dissolve over time under the release of
cytotoxic silver ions [49–53]. The presence of dissolved oxygen is necessary for the oxidation
and subsequent dissolution of silver that causes the toxic effect [54–59]. Therefore, we
studied the release of silver ions from ultrasmall nanoparticles by filtration experiments
through spin filters (3 kDa). The nanoparticles were incubated in water in closed vessels
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but without degassing at 4 ◦C, 25 ◦C, and 37 ◦C for up to 14 days and then separated
from released silver ions by spin filtration. The filtrate was analyzed by AAS for silver
ions. The procedure was validated with the analysis of a solution of silver nitrate (full
permeation through the spin filter), a dispersion of gold nanoparticles (GSH-coated; 2 nm;
no permeation through the spin filter), and as control a mixture of dissolved silver nitrate
and dispersed gold nanoparticles. This gave the expected results, i.e., Ag+ ions went
through the filter and gold nanoparticles were restrained. Only very small amounts of
silver ions were detected for the Ag and Ag50Pt50 nanoparticles, irrespective of storage time
and temperature (Figure 6). In other words, no significant dissolution of the nanoparticles
was detected for monometallic and bimetallic silver nanoparticles.

Table 4. Cell viabilities (in %) by the MTT test of GSH-coated nanoparticles as function of the total
metal content c(metal) (mean ± standard deviation in percent). For silver-containing particles, the
effective silver concentration is given in parentheses in µg mL−1.

c(Metal)/in µg
mL−1 Au Ag Ag70Pt30 Ag50Pt50 Ag/Pt (50:50) Ag20Pt80 Pt

0 100 ± 6 100 ± 5 (Ag: 0) 100 ± 4 (Ag: 0) 100 ± 9 (Ag: 0) 100 ± 4 (Ag: 0) 100 ± 2 (Ag: 0) 100 ± 10
2.5 93 ± 6 92 ± 6 (Ag: 2.5) 105 ± 2 (Ag: 1) 107 ± 2 (Ag: 0.9) 99 ± 7 (Ag: 0.9) 98 ± 4 (Ag: 0) 100 ± 3
5 99 ± 4 88 ± 7 (Ag: 5) 110 ± 1 (Ag: 2.8) 114 ± 4 (Ag: 1.8) 100 ± 6 (Ag: 1.8) 113 ± 5 (Ag: 0.6) 97 ± 8

10 105 ± 5 79 ± 6 (Ag: 10) 95 ± 4 (Ag: 5.6) 99 ± 4 (Ag: 3.6) 71 ± 12 (Ag: 3.6) 99 ± 10 (Ag: 1) 90 ± 5
15 93 ± 4 77 ± 5 (Ag: 15) 90 ± 5 (Ag: 8.5) 94 ± 5 (Ag: 5) 62 ± 12 (Ag: 5) 99 ± 4 (Ag: 1.8) 84 ± 5
25 102 ± 6 91 ± 9 (Ag: 25) 84 ± 6 (Ag: 14) 97 ± 5 (Ag: 8.9) 60 ± 8 (Ag: 8.9) 105 ± 6 (Ag: 3) 91 ± 4
50 93 ± 11 89 ± 10 (Ag: 50) 26 ± 10 (Ag: 28) 47 ± 6 (Ag: 18) 54 ± 7 (Ag: 18) 100 ± 4 (Ag: 6) 90 ± 8
75 91 ± 6 78 ± 4 (Ag: 75) 15 ± 10 (Ag: 42) 13 ± 3 (Ag: 27) 46 ± 14 (Ag: 27) 85 ± 6 (Ag: 9) 85 ± 3
100 97 ± 4 76 ± 5 (Ag: 100) 11 ± 5 (Ag: 56) 8 ± 4 (Ag: 36) 44 ± 14 (Ag: 36) 69 ± 3 (Ag: 12) 87 ± 7

Table 5. MIC values determined for E. coli DH5α and S. xylosus DSM 6179 after 24 h of incubation with
different doses of GSH-coated nanoparticles, given in µg mL−1 (metal content). The effective silver
concentration is given in parentheses in µg mL−1, where appropriate. E. coli (CFU: 1.1·108 cells mL−1;
cell dose: 1.1·106 cells per well), S. xylosus (CFU: 5·107 cells mL−1; cell dose: 5·105 cells per well).

Sample E. coli (Gram-Negative) S. xylosus (Gram-Positive)

AgNO3 6–10 (6–10) 15–25 (15–25)
Ag >100 (>100) >100 (>100)
Au >100 (−) >100 (−)
Pt >100 (−) >100 (−)
Ag50Pt50 11–15 (4–5.4) 1–5 (0.4–1.8)
Ag/Pt (50:50) 76–100 (27–36) >100 (>36)
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for up to 14 days.
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4. Discussion

All nanoparticles had a uniform, mostly spherical shape and were well dispersible
in water. Therefore, it is not surprising that they were easily taken up by HeLa cells.
The nature of the metal core did not influence the uptake by cells or the intracellular
localization; i.e., the interaction with cells was governed by their surface chemistry (e.g.,
the surface charge) [60]. The accumulation of the nanoparticles inside the cells suggests
their presence inside endolysosomes [61]. However, the nanoparticles did not enter the
cell nucleus (at least not to a significant extent), as sometimes reported for ultrasmall
nanoparticles [35,62]. This is well in line with earlier observations on fluorescent ultrasmall
nanoparticles. A size-dependent intracellular localization was reported for MCF7 breast
cancer cells. Gold nanoparticles of 2 and 6 nm diameter were found in the nucleus,
while their larger plasmonic analogues (10 and 16 nm) reached only the cytoplasm [62].
Yang et al. [63] and Carrillo-Carrion et al. [64] reported similar results for gold nanoparticles
and quantum dots in the ultrasmall size range. Uptake studies of fluorescent ultrasmall
gold nanoparticles (2 nm) in CT-26 cells to elucidate the uptake mechanism of ultrasmall
nanoparticles were performed in the presence of various endocytosis inhibitors. It was
shown that the uptake of the nanoparticles with CT-26 cells was not inhibited by a single
endocytosis inhibitor. However, cooling to 4 ◦C led to a strong inhibition of the uptake.
This excludes a purely diffusion-controlled migration across the cell membrane. Clearly,
a combination of different endocytosis pathways is active for the uptake of ultrasmall
nanoparticles [65].

Despite the considerable uptake by HeLa cells, we observed no significant toxic effect
for ultrasmall gold and platinum nanoparticles, except at very high concentrations, well
in line with their noble and inert nature. Ultrasmall gold nanoparticles were studied in
depth regarding their cytotoxicity. For example, ultrasmall gold nanoparticles terminated
with GSH (1.7 nm) were not cytotoxic for Hela cells up to 32 µg gold mL−1 [66]. Gold
clusters were cytotoxic only below 2 nm size and only if the gold surface was accessible
for biomolecules or cell constituents, which is the case for phosphane-ligand stabilized
nanoparticles [67]. Rostek et al. prepared poly(N-vinylpyrrolidone) (PVP)-stabilized
spherical gold, platinum, and silver nanoparticles with a size of 4 to 8 nm and incubated
hMSC cells with them. Neither platinum nor gold nanoparticles had any effect on cell
viability. Only silver nanoparticles showed a cytotoxic activity [68].

Surprisingly, monometallic ultrasmall silver nanoparticles showed a low cytotoxicity
on HeLa cells and bacteria at all concentrations in our study. However, the effect was small
as the release of silver ions was almost negligible. In general, the toxic concentration of
silver is about 1–10 µg mL−1 for silver ions and 10–100 µg mL−1 for silver nanoparticles,
depending on the cell type and the cultivation conditions [13]. For bacteria, it is of the
order of 0.1 to 1 µg mL−1 for silver ions and 0.1 to 1 µg mL−1 for silver nanoparticles,
depending on the bacterium, the culture conditions, and the type of nanoparticle [13]. For
Staphylococcus aureus, larger silver nanoparticles of different size and shape (10 to 100 nm)
were reported with a MIC of 25 to 50 µg mL−1 [69]. In a comparative study, the toxic effect of
silver administered as ions (silver acetate) occurred at 0.5 to 5 µg mL−1 for E. coli, S. aureus,
human mesenchymal stem cells (hMSCs), and peripheral blood mononuclear cells (PBMCs).
PVP-stabilized silver nanoparticles (70 nm) gave a cytotoxic effect on the same bacteria and
cells in the concentration range of 12.5 to 50 µg mL−1 for silver nanoparticles [14]. It was
also demonstrated a decade ago that silver chloride is immediately formed after release of
silver ions from silver nanoparticles [70], and that silver nanoparticles are neither toxic to
bacteria [71] nor to cells [58,71] in the absence of oxygen, i.e., without oxidative dissolution.
In contrast, ultrasmall GSH-coated silver nanoparticles (2 nm) showed a remarkably high
cytotoxicity where about 50% of HeLa cells were dead at a concentration of 15 µg mL−1

after 3 h and at a concentration of 1 µg mL−1 after 24 h. These nanoparticles were also
easily taken up by HeLa cells within 24 h and found in the cytosol [72]. The difference
to our study is probably the fact that the particles analyzed in our study were stored for
4 weeks in dispersion for aging.
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It shall be noted that all particle characterization data (physico-chemical and biological)
that are reported here were obtained with nanoparticles that were immersed in water at
ambient temperature for four weeks. During the initial experiments, it turned out that the
cytotoxicity towards cells and bacteria varied with the age of the particles in an erratic way,
although their physico-chemical properties like particle size did not significantly change.
After four weeks of storage, all data were consistent and reproducible. It is possible that
the particles underwent an internal change during immersion in water that influenced
their internal structure and their biological effects. This would also explain the much
higher cytotoxicity observed for freshly prepared silver nanoparticles [72]. However, the
elucidation of this effect would require extensive time-resolved studies that were beyond
the scope of this study.

The cytotoxicity of the bimetallic silver-platinum nanoparticles was higher than that of
monometallic silver nanoparticles, both for HeLa cells and bacteria. The critical concentra-
tions for a 50% cytotoxicity for HeLa cells were about 50 µg mL−1 for Ag70Pt30 and Ag50Pt50
and 75 µg mL−1 for the physical mixture of Ag/Pt nanoparticles. A 50% cytotoxicity was
not reached for Au, Ag, Pt, and Ag20Pt80 nanoparticles. Notably, Ag50Pt50 nanoparticles
were significantly more cytotoxic than an equimolar physical mixture (50:50) of Ag and Pt
nanoparticles [73]. The MIC values of bimetallic nanoparticles were close to or even lower
than for silver nitrate, used in this study as reference and source of bactericidal silver ions.
Thus, the bimetallic silver-platinum nanoparticles were more toxic against HeLa cells and
bacteria than monometallic silver nanoparticles. This cannot be due to an enhanced release
of silver ions as the bimetallic Ag50Pt50 nanoparticles did not dissolve in water.

Many of the available reports on studies on the antibacterial activity of bimetallic
nanoparticles compared to their monometallic counterparts are based on the application
of Au-Ag nanoparticles, but the mechanism of their bactericidal action remains not fully
understood [74]. Little is known about the cytotoxicity of bimetallic silver–platinum
nanoparticles so far. There is an ongoing discussion on a sacrificial anode effect in alloyed
nanoparticles which could lead to polarization and an enhanced dissolution of cytotoxic
silver ions. It has been shown theoretically that a noble metal can protect a less noble metal
from oxidation [75]. On the other hand, a noble metal can enhance the dissolution rate
by increasing the apparent charge of Ag0 to Ag+ by electrochemical polarization [76]. A
potential sacrificial anode effect was reported for silver–platinum surface coatings [77–80].
Grasmik et al. prepared bimetallic AgPt nanoparticles of 15 to 25 nm diameter with PVP
coating and found a cytotoxicity against hMSC above a silver content of 50 mol%, supported
by silver-release experiments where silver was only released above 50 mol% silver [22].
Breisch et al. studied the antibacterial effects of a physical mixture of PVP-coated Ag and
Pt nanoparticles (both 7 nm) against E. coli and S. aureus and observed an enhancement
of the cytotoxicity of silver nanoparticles in the presence of platinum nanoparticles [73].
In contrast, alloyed nanoparticles (10 nm; PVP-coated) of the compositions Ag, Ag10Pt90,
Ag30Pt70, Ag50Pt50, Ag70Pt30, Ag90Pt10, and Pt did not show an enhanced bactericidal
effect [21]. Yang et al. prepared 2.1 nm bimetallic nanoparticles of Ag and Cu and reported
a considerably enhanced silver release rate [81]. Singh et al. prepared bovine serum
albumin (BSA)-capped bimetallic AgPt nanoparticles of 10 to 15 nm diameter but did not
find an adverse effect on the viability and the morphology of human gingival fibroblasts
exposed to the nanoparticles for 24 h. This was in sharp contrast to the precursor salts that
released silver or platinum ions, i.e., Ag2SO4 and H2PtCl6, respectively, suggesting that
the surface of the nanoparticles was well blocked by attached thiol groups from the BSA.
However, the authors did not report the Ag:Pt ratio in their particles [82].

Regardless of the presence or absence of a sacrificial anode effect, the cytotoxic-
ity of silver-containing nanoparticles has always been related to the release of silver
ions [11,13,83,84]. In most studies, the silver-containing nanoparticles were surface-stabilized
by ligands with low surface affinity, e.g., PVP. The low cytotoxicity of GSH-stabilized silver
nanoparticles indicates that the surface ligand plays a decisive role in the cytotoxicity. The
observed very low dissolution rate of GSH-coated silver nanoparticles is in line with earlier
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results where PVP-coated silver nanoparticles (70 nm) did not show a release of silver
ions in the presence of cysteine [55]. Cysteine obviously blocked the surface of the metal
nanoparticles by firm adsorption, replacing the initial ligand PVP. This was also found
by Liu et al. and Levard et al., who reviewed different approaches to control the release
of silver ions from silver nanoparticles. They concluded that the release of silver ions is
restricted by sulfidation or by thiol ligands on the silver nanoparticle surface [57,85–87]. It
has been shown by various methods that the sulfur–silver bond is very strong [30,72,88,89]
and apparently prevents the release of silver ions by oxidation. It should also be considered
that the ligand density on the surface of an ultrasmall nanoparticle is very high (14 to
29 GSH units per nm2); i.e., the metal surface is probably well protected against oxidative
attack from dissolved oxygen. This is obviously also the case for ultrasmall nanoparticles
with their very high specific surface area. The oxidized state of the particles as shown
by XPS for both silver and for platinum implies the presence of oxidized surface species,
probably together with glutathione via the sulfur atom. However, it must be cautioned that
the dissolution in water may be different from that in cell culture media where a complex-
ation of silver ions by proteins or other biomolecules is well conceivable. Unfortunately,
it is not possible to study the dissolution of ultrasmall silver nanoparticles in biological
media like RPMI-FCS because particles and ions cannot be separated in the presence of
high protein concentrations (nanoparticles and proteins are of the same dimension and
cannot be separated by spin filtration) [24].

It is remarkable that the highest cytotoxicity against eukaryotic cells and bacteria was
observed for the bimetallic nanoparticles, especially with an equimolar ratio of silver to
platinum. They were much more cytotoxic than a physical mixture of the monometallic
nanoparticles. This cannot be ascribed to the thiolated surface which is also present in
monometallic silver nanoparticles. Although the exact mechanism of the cytotoxic action is
not known, it is likely that the oxidized nature of the metals (especially of silver) influences
the biological effects, possibly after cellular uptake.

5. Conclusions

All types of ultrasmall nanoparticles are easily taken up by eukaryotic cells (HeLa),
regardless of the composition of their metal core. Bimetallic nanoparticles have a higher
cytotoxicity and a stronger bactericidal effect than a physical mixture of silver and platinum
nanoparticles and the monometallic nanoparticles, both against HeLa cells and bacteria
(E. coli, Gram-negative, and S. xylosus, Gram-positive). This is not due to an enhanced
dissolution, e.g., by an oxidative release of silver ions. The very dense surface coverage
by the strongly attached ligand glutathione (bound by the strong Ag-S bond) is probably
responsible for the very low release of silver ions. Nevertheless, the fact that the bimetallic
nanoparticles are consistently more cytotoxic than the monometallic silver nanoparticles,
although both do not release silver ions upon immersion in water, must be due their
bimetallic nature. Obviously, the bimetallic AgPt nanoparticles exert an additional cytotoxic
effect which occurs only in biological media and cannot be explained by the ion release in
water. It is well conceivable that an enhanced dissolution mediated by biomolecules and
increased by polarization of silver by platinum is responsible for this effect.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma17153702/s1: Figure S1: Differential centrifugal sedimentation
(DCS) of bimetallic Ag70Pt30 and Ag20Pt80 nanoparticles; Figure S2: SAXS on bimetallic Ag70Pt30
and Ag20Pt80 nanoparticles; Figure S3: X-ray powder diffraction on bimetallic Ag70Pt30 and Ag20Pt80
nanoparticles; Figure S4: XPS measurements on bimetallic Ag70Pt30 and Ag20Pt80 nanoparticles; Fig-
ure S5: 1H NMR spectra of Ag70Pt30 and Ag20Pt80 nanoparticles; Figure S6: 13C-DEPTQ NMR spectra
of Ag70Pt30 and Ag20Pt80 nanoparticles; Figure S7: 1H-1H COSY NMR spectra of Ag70Pt30 and
Ag20Pt80 nanoparticles; Figure S8: 1H-13C HSQC NMR spectra of Ag70Pt30 and Ag20Pt80 nanoparti-
cles; Figure S9: 1H-13C-HMBC NMR spectra of Ag70Pt30 and Ag20Pt80 nanoparticles; Figure S10: IR
spectra of GSH- und N3-terminated gold, silver, platinum, and bimetallic silver–platinum nanoparticles.
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